martes, 21 de octubre de 2008



EN ESTE BLOG DEMOSTRAREMOS LA IMPORTANCIA DE LOS MODELOS ATÓMICOS , DANDO A SABER TODO SOBRE LOS CIENTÍFICOS QUE CREARON LOS MODELOS ATÓMICOS, TAMBIÉN MOSTRAREMOS UNA VARIEDAD DE VÍDEOS Y DE IMAGENES QUE GUSTARAN DE MUCHO Y COMPRENDERAN MAS EL TEMA.






historia de los modelos atómico



la historia del modelo atómico comienza muchos siglos atrás, incluso antes de Cristo, en el siglo V , los filósofos griegos se preguntaban si la materia podía ser dividida en tantas partículas hasta llegar a un punto en que ya no se pudiera dividir mas, es decir que fuera indivisible. Es así como Democrito hace una teoría en la que afirma que la materia esta compuesta de partículas indivisibles, a estas partículas las llamo átomos. La palabra átomo en griego significa indivisible.


Empédocles, otro filósofo griego, que no creía en dicha teoría y postulaba la idea de que la materia estaba constituida por 4 elementos que se combinaban entre sí. Según él, la vida sólo era posible donde había humedad: una flor sin agua se muere; siendo así su primer elemento el agua. Pero llego al razonamiento de que el agua no es sólida, sino que se escapa de las manos. Una montaña no puede estar formada de agua y necesita, por tanto, otro elemento que le dé consistencia, solidez. La tierra fue el segundo elemento del que habló, pues, según el, daba consistencia al agua. Sin embargo, el barro que resultaba de esta mezcla de estos era muy blando. Por lo cual creyó que quien le daba dureza era un tercer elemento, el aire, pues seca o evapora el agua que contienen las cosas. Por último, consideró el fuego como 4º elemento.


Posteriormente transcurre un período en la historia de la Química, donde la principal preocupación es tratar de convertir los metales conocidos en oro. A los científicos encargados de estos procesos se les llamaba alquimistas. Nunca se pudo lograr el objetivo de estos científicos.

Con la llegada de la ciencia experimental en los siglos XVI y XVII, los avances en todos los líquidos, gases y sólidos se pueden descomponer en sus componentes más básicos, o elementos. Por ejemplo, se descubrió que la sal se componía de dos elementos diferentes, el sodio y el cloro, ligados en una unión íntima conocida como compuesto químico. El aire, en cambio, resultó ser una mezcla de los gases nitrógeno y oxígeno
En 1803 el químico ingles John Dalton, realiza y propone una nueva teoría sobre los componentes de la materia. Dalton divide la materia en dos grandes grupos; los elementos y los compuestos. Los elementos estarían formados por unidades fundamentales a las que identifico como átomos (en honor a Democrito).

Los compuestos estarían formados por moléculas que se forman por la unión de átomos bajo las leyes de Proporciones Definidas y Múltiples. Sin embargo la teoría de Dalton seguía considerando los átomos como partículas indivisibles al igual que Democrito. Además de esta teoría creó la ley de las proporciones múltiples. Que explica que cuando los elementos se combinan en más de una proporción, y aunque los resultados de estas combinaciones son compuestos diferentes, existe una relación entre esas proporciones. Gracias a que Dalton enunciará su teoría a mediados del siglo XIX, se desencadeno una serie de sucesos que introdujeron las modificaciones posteriores del modelo atómico inicial.


Hacia finales del siglo XIX se descubrió que el átomo si es una partícula divisible, ya que consta de tres partículas elementales, protones, neutrones y electrones. Los primeros en ser descubiertos fueron los electrones en el año 1897 por el investigador Sir Joseph Thomson. Luego de ser descubiertos Hantaro Nagaoka propone una teoría en la cual afirma que los electrones giran en orbitas alrededor de un cuerpo cargado positivamente, igualmente como lo hacen los planetas alrededor del Sol. Los protones fueron descubiertos al igual que el núcleo del átomo en 1911 por Ernest Rutherford. Los últimos en ser descubiertos fueron los neutrones en 1933 por James Chadwick (Gran Bretaña).
Siempre existió una gran curiosidad por el tamaño del átomo y esto es algo que atrajo a muchas científicos durante un largo periodo pero por falta de materiales o instrumentos para realizar experimentos que pudieran medir esto muchos se quedaron con la duda. Luego a medida que la ciencia fue evolucionando se hicieron distintos experimentos que dieron respuesta a esta inquietud. El átomo más ligero, el de hidrógeno, tiene un diámetro de aproximadamente 10-10 m (0,0000000001 m) y una masa alrededor de 1,7 × 10-27 Kg. (la fracción de un kilogramo representada por 17 precedido de 26 ceros y una coma decimal). Un átomo es tan pequeño que una sola gota de agua contiene más de mil trillones de átomos.










El átomo y su estructura




El átomo es la porción más pequeña de la materia. Esta conformado por tres partículas con cargas diferentes (positiva, negativa y neutra). Existen distintos tipos de átomos; cada uno de estos recibe el nombre de elemento químico.


Tiene un núcleo central en donde se encuentra la mayoría de la masa del átomo que esta conformada por cargas positivas y neutras, los núcleos menos estables son los que contienen un número impar de neutrones y un número impar de protones .Alrededor del núcleo están distintos anillos llamados orbitas por los que giran las cargas negativas llamadas electrones.


Las tres partículas que conforman el átomo son:
Electrones: Es una partícula elemental con carga eléctrica negativa igual a 1,602 x 10-19 coulomb y masa igual a 9,1083 x 10-28 g, que se encuentra formando parte de los átomos de todos los elementos.
Protones: Es una partícula elemental con carga eléctrica positiva igual a 1,602 x 10-19 coulomb y cuya masa es 1837 veces mayor que la del electrón , que se encuentra formando parte de los átomos de todos los elementos. Al número de protones se le llama Z o número atómico, y se corresponde con el número de orden en el sistema periódico.
Neutrones: Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón, que se encuentra formando parte de los átomos de todos los elementos. Al número de neutrones se llama N. Siendo a su vez la masa atómica de un átomo la suma de los protones y de los neutrones.


Para un mismo elemento químico, el número de protones que tienen sus átomos en sus núcleos es el mismo, pero no el de neutrones, el cual puede variar. Se llaman Isótopos a los átomos de un mismo elemento químico que tienen el mismo número atómico pero distinto número de electrones.
Puede ocurrir que el átomo pierda o gane electrones, adquiriendo carga eléctrica neta y dando lugar a un ión:
Si pierde electrones, adquiere carga eléctrica positiva y el ión se llama catión.
Si gana electrones, adquiere carga eléctrica negativa y el ión se llama anión.








Modelo Atómico actual

Los principios básicos del modelo actual son:
La presencia de un núcleo atómico con las partículas conocidas, la casi totalidad de la masa atómica en un volumen muy pequeño.
Los estados estacionarios o niveles de energía fundamentales en los cuales se distribuyen los electrones de acuerdo a su contenido energético.
La dualidad de la materia (carácter onda-partícula), aunque no tenga consecuencias prácticas al tratarse de objetos de gran masa. En el caso de partículas pequeñas (electrones) la longitud de onda tiene un valor comparable con las dimensiones del átomo.


La probabilidad en un lugar de certeza, en cuanto a la posición, energía y movimiento de un electrón, debido a la imprecisión de los estudios por el uso de la luz de baja frecuencia.
Este modelo fue ideado por Erwin Schodinger, lo llamo “ecuación de Onda”, es una formula matemática que considera todos los aspectos anteriores. Para resolver esta ecuación se una la función de onda (PSI) que es una medida de la probabilidad de encontrar al electrón en el espacio. Al área en donde hay mayor probabilidad de encontrar al electrón se le llama orbital.


La función de onda depende de los valores de tres variables que reciben el nombre de números cuanticos. Cada conjunto de números cuánticos, define una función específica para un electrón.







"El ORBITAL ATÓMICO"



















modelo atomico de john dalton



John Dalton (1766-1844). Químico y físico británico. Creó una importante teoría atómica de la materia. En 1803 formuló la ley que lleva su nombre y que resume las leyes cuantitativas de la ca (ley de la conservación de la masa, realizada por Lavoisier; ley de las proporciones definidas, realizada por Louis Proust; ley de las proporciones múltiples, realizada por él mismo). Su teoría se puede resumir en:


1.- Los elementos químicos están formados por partículas muy pequeñas e indivisibles llamadas átomos.
2.- Todos los átomos de un elemento químico dado son idénticos en su masa y demás propiedades.
3.- Los átomos de diferentes elementos químicos son distintos, en particular sus masas son diferentes.
4.- Los átomos son indestructibles y retienen su identidad en los cambios químicos.
5.- Los compuestos se forman cuando átomos de diferentes elementos se combinan entre sí, en una relación de números enteros sencilla, formando entidades definidas (hoy llamadas moléculas).


Para Dalton los átomos eran esferas macizas. representación de distintos átomos según Dalton:


¡ Oxígeno
¤ Hidrógeno
Å Azufre
ã Cobre
l Carbono
Representación de un cambio químico, según Dalton:
¡ + ¤ ð ¡ ¤


Esto quería decir que un átomo de oxígeno más un átomo de hidrógeno daba un átomo o molécula de agua.
La formación de agua a partir de oxígeno e hidrógeno supone la combinación de átomos de estos elementos para formar "moléculas" de agua. Dalton, equivocadamente, supuso que la molécula de agua contenía un átomo de oxígeno y otro de hidrógeno.
Dalton, además de esta teoría creó la ley de las proporciones múltiples. Cuando los elementos se combinan en más de una proporción, y aunque los resultados de estas combinaciones son compuestos diferentes, existe una relación entre esas proporciones.
Cuando dos elementos se combinan para formar más de un compuesto, las cantidades de uno de ellos que se combina con una cantidad fija del otro están relacionadas entre sí por números enteros sencillos.


A mediados del siglo XIX, unos años después de que Dalton enunciara se teoría, se desencadenó una serie de acontecimientos que fueron introduciendo modificaciones al modelo atómico inicial.


De hecho, el mundo atómico es tan infinitamente pequeño para nosotros que resulta muy difícil su conocimiento. Nos hallamos frente a él como si estuviésemos delante de una caja cerrada que no se pudiese abrir. Para conocer su contenido solamente podríamos proceder a manipular la caja (moverla en distintas direcciones, escuchar el ruido, pesarla...) y formular un modelo de acuerdo con nuestra experiencia. Este modelo sería válido hasta que nuevas experiencias nos indujeran a cambiarlo por otro. De la misma manera se ha ido construyendo el modelo atómico actual; de Dalton hasta nuestros días se han ido sucediendo diferentes experiencias que han llevado a la formulación de una serie de modelos invalidados sucesivamente a la luz de nuevos acontecimientos





















modelo atomico de J. J. Thomson , publicada entre los años 1.898 y 1.904



Joseph Thomson (1.856-1.940) partiendo de las informaciones que se tenían hasta ese momento presentó algunas hipótesis en 1898 y 1.904, intentando justificar dos hechos:
La materia es eléctricamente neutra, lo que hace pensar que, además de electrones, debe de haber partículas con cargas positivas.


Los electrones pueden extraerse de los átomos, pero no así las cargas positivas.
Propuso entonces un modelo para el átomo en el que la mayoría de la masa aparecía asociada con la carga positiva (dada la poca masa del electrón en comparación con la de los átomos) y suponiendo que había un cierto número de electrones distribuidos uniformemente dentro de esa masa de carga positiva (como una especie de pastel o calabaza en la que los electrones estuviesen incrustados como si fueran trocitos de fruta o pepitas).


Fue un primer modelo realmente atómico, referido a la constitución de los átomos, pero muy limitado y pronto fue sustituido por otros.
Thomson, sir Joseph john (1856-1940). Físico británico. Según el modelo de Thomson el átomo consistía en una esfera uniforme de materia cargada positivamente en la que se hallaban incrustados los electrones de un modo parecido a como lo están las semillas en una sandía. Este sencillo modelo explicaba el hecho de que la materia fuese eléctricamente neutra, pues en los átomos de Thomson la carga positiva era neutralizada por la negativa. Además los electrones podrían ser arrancados de la esfera si la energía en juego era suficientemente importante como sucedía en los tubos de descarga.


J. J. Thomson demostró en 1897 que estos rayos se desviaban también en un campo eléctrico y eran atraídos por el polo positivo, lo que probaba que eran cargas eléctricas negativas. Calculó también la relación entre la carga y la masa de estas partículas.
Para este cálculo realizó un experimento: hizo pasar un haz de rayos catódicos por un campo eléctrico y uno magnético.


Cada uno de estos campos, actuando aisladamente, desviaba el haz de rayos en sentidos opuestos. Si se dejaba fijo el campo eléctrico, el campo magnético podía variarse hasta conseguir que el haz de rayos siguiera la trayectoria horizontal original; en este momento las fuerzas eléctricas y magnética eran iguales y, por ser de sentido contrario se anulaban.


El segundo paso consistía en eliminar el campo magnético y medir la desviación sufrida por el haz debido al campo eléctrico. Resulta que los rayos catódicos tienen una relación carga a masa más de 1.000 veces superior a la de cualquier ion.
Esta constatación llevó a Thomson a suponer que las partículas que forman los rayos catódicos no eran átomos cargados sino fragmentos de átomos, es decir, partículas subatómicas a las que llamó electrones.
Las placas se colocan dentro de un tubo de vidrio cerrado, al que se le extrae el aire, y se introduce un gas a presión reducida.


























Modelo atómico de Rutherford, publicada en el 1.9111




Ernst Rutherford (1.871-1.937) identifico en 1.898 dos tipos de las radiaciones emitidas por el urania a las que llamo a las que llamó alfa (a) y beta (b) . Poco después Paul Villard identifico un tercer tipo de radiaciones a las que llamo gamma (n). Rutherford discípulo de Thomson y sucesos de su cátedra, junto con sus discípulos Hans Geiger (1.882-1.945) y Gregor Marsden (1.890-1956), centraron sus investigaciones en las características de las radiactividad, diseñando su famosa experiencia de bombardear láminas delgadas de distintas sustancias, utilizando como proyectiles las partículas alfa (a) .


Sir Ernest Rutherford (1871-1937), famoso hombre de ciencia inglés que obtuvo el premio Nobel de química en 1919, realizó en 1911 una experiencia que supuso en paso adelante muy importante en el conocimiento del átomo.


La experiencia de Rutherford consistió en bombardear con partículas alfa una finísima lámina de oro. Las partículas alfa atravesaban la lámina de oro y eran recogidas sobre una pantalla de sulfuro de cinc.
La importancia del experimento estuvo en que mientras la mayoría de partículas atravesaban la lámina sin desviarse o siendo desviadas solamente en pequeños ángulos, unas cuantas partículas eran dispersadas a ángulos grandes hasta 180º.
El hecho de que sólo unas pocas radiaciones sufriesen desviaciones hizo suponer que las cargas positivas que las desviaban estaban concentradas dentro de los átomos ocupando un espacio muy pequeño en comparación a todo el tamaño atómico; esta parte del átomo con electricidad positiva fue llamado núcleo.


Rutherford poseía información sobre el tamaño, masa y carga del núcleo, pero no tenía información alguna acerca de la distribución o posición de los electrones.
En el modelo de Rutherford, los electrones se movían alrededor del núcleo como los planetas alrededor del sol. Los electrones no caían en el núcleo, ya que la fuerza de atracción electrostática era contrarrestada por la tendencia del electrón a continuar moviéndose en línea recta. Este modelo fue satisfactorio hasta que se observó que estaba en contradicción con una información ya conocida en aquel momento: de acuerdo con las leyes del electromagnetismo, un electrón o todo objeto eléctricamente cargado que es acelerado o cuya dirección lineal es modificada, emite o absorbe radiación electromagnética.


El electrón del átomo de Rurherford modificaba su dirección lineal continuamente, ya que seguía una trayectoria circular. Por lo tanto, debería emitir radiación electromagnética y esta radiación causaría la disminución de la energía del electrón, que en consecuencia debería describir una trayectoria en espiral hasta caer en el núcleo. El modelo de Rutherford fue sustituido por el de Bohr unos años más tarde.
Con las informaciones que disponía y de las obtenidas de su experiencia, Lord Rutherford propuso en el 1.911 este modelo de átomo:
El átomo esta constituido por una zona central, a la que se le llama núcleo, en la que se encuentra concentrada toda la carga positiva y casi toda la masa del núcleo.
Hay otra zona exterior del átomo, la corteza, en la que se encuentra toda la carga negativa y cuya masa es muy pequeña en comparación con la del átomo. La corteza esta formada por los electrones que tenga el átomo.
Los electrones se están moviendo a gran velocidad en torno al núcleo.
El tamaño del núcleo es muy pequeño en comparación con el del átomo (unas 100.000 veces menor


























Modelo atómico de Bohr para el átomo de hidrógeno, propuesto en 1.913



A pesar de constituir un gran avance y de predecir hechos reales, el modelo nuclear de Rutherford presentaba dos graves inconvenientes:


Contradecía las leyes electromagnéticas de Maxwell, según las cuales, una partícula cargada, cuando posee aceleración, emite energía electromagnética.
Según el enunciado anterior los espectros atómicos debería ser continuos, ocurriendo que éstos son discontinuos, formados por líneas de una frecuencia determinada.
El físico danés Meils Bohn (1.885-1.962), premio Nobel de Física en 1.922 presento en 1.913 el primer modelo de un átomo basado en la cuantización de la energía. Supero las dificultades del modelo de Rutherford suponiendo simplemente que la Física clásica no se podía aplicar al universo atómico. No hay ninguna razón, decidio Bohr, para esperar que los electrones en los átomos radien eenergía mientras no se les proporcione ninguna energía adicional. Igualmente los espectros atómicos de absorción y emisión de lineas eran indicativos de que los átomos, y más concretamente los electrones, eran capaces de absorver o emitir cuantos de energía en determinadas condiciones
La teoría de los cuantos de Planck la aporto a Bohr dos ideas:


Las oscilaciones eléctricas del átomo solo pueden poseer cantidades discretas de energía (están cuantizados)
Sólo se emite radiacción cuando el oscilador pasa de un estado cuantizado a otro de mayor energía.
Bohr aplicó estas ideas al átomo de hidrógeno y enuncio los tres postulados siguientes:
En el átomo de hidrógeno el movimiento del electrón alrededor del núcleo está restingido a un número discreto de orbitas circulares (primer postulado) .
El momento angular del eléctrón en una órbita está cuantizado; es un número entero de h/2pi, siendo h la constante de Planck (segundo postulado).
El electrón no radia energía mientras permanece en una de las órbitas permitidas, teniendo en cada órbita una energía característica constante. Cuando el electrón cae de un estado de energía superior a otro de energía inferior, se emite una cantidad de energía definida en forma de un fotón de radiación (tercer postulado).


Niels Bohr (1885-1962 fue un físico danés que aplicó por primera vez la hipótesis cuántica a la estructura atómica, a la vez que buscó una explicación a los espectros discontinuos de la luz emitida por los elementos gaseosos. Todo ello llevó a formular un nuevo modelo de la estructura electrónica de los átomos que superaba las dificultades del átomo de Rutherford.


Este modelo implicaba los siguientes postulados:


1.- El electrón tenía ciertos estados definidos estacionarios de movimiento (niveles de energía) que le eran permitidos; cada uno de estos estados estacionarios tenía una energía fija y definida.

2.- Cuando un electrón estaba en uno de estos estados no irradiaba pero cuando cambiaba de estado absorbía o desprendía energía.
3.- En cualquiera de estos estados, el electrón se movía siguiendo una órbita circular alrededor del núcleo.
4.- Los estados de movimiento electrónico permitidos eran aquellos en los cuales el momento angular del electrón (m · v · r ) era un múltiplo entero de h/2 · 3.14.
Vemos pues que Bohr aplicaba la hipótesis cuántica por Planck en 1900.


La teoría ondulatoria electromagnética de la luz era satisfactoria en cuanto explicaba algunos fenómenos ópticos tales como la difracción o la dispersión, pero no explicaba otros fenómenos tales como la irradicación de un cuerpo sólido caliente. Planck resolvió el problema suponiendo que un sistema mecánico no podía tener cualquier valor de la energía, sino solamente ciertos valores.


Así, en un cuerpo sólido caliente que irradia energía, Planck consideró que una onda electromagnética de frecuencia era emitida por un grupo de átomos que circulaba con la misma frecuencia.


Aplicando esta hipótesis a la estructura electrónica de los átomos se resolvía la dificultad que presentaba el átomo de Rutherford. El electrón, al girar alrededor del núcleo, no iba perdiendo la energía, sino que se situaba en unos estados estacionarios de movimiento que tenían una energía fija. Un electrón sólo perdía o ganaba energía cuando saltaba de un estado (nivel) a otro.


Por otro lado, el modelo de Bohr suponía una explicación de los espectros discontinuos de los gases, en particular del más sencillo de todos, el hidrógeno. Una raya de un espectro correspondía a una radiación de una determinada frecuencia.
¿Por qué un elemento emite solamente cierta frecuencia ? Veamos la respuesta:
En condiciones normales los electrones de un átomo o ion se sitúan en los niveles de más baja energía. Cuando un átomo recibe suficiente energía, es posible que un electrón salte a un nivel superior a aquel en que se halla. Este proceso se llama excitación. Un electrón excitado se halla en un estado inestable y desciende a un nivel inferior, emitiendo una radiación cuya energía será igual a la diferencia de la que tienen los dos niveles.


La energía del electrón en el átomo es negativa porque es menor que la energía del electrón libre.
Al aplicar la formula de Bohr a otros átomos se obtuvieron resultados satisfactorios, al coincidir el pronóstico con el resultado experimental de los espectros de estos átomos.
El modelo de Thomson presentaba un átomo estático y macizo. Las cargas positivas y negativas estaban en reposo neutralizándose mutuamente. Los electrones estaban incrustados en una masa positiva como las pasas en un pastel de frutas. El átomo de Rutherford era dinámico y hueco, pero de acuerdo con las leyes de la física clásica inestable. El modelo de Bohr era análogo al de Rutherford, pero conseguía salvar la inestabilidad recurriendo a la noción de cuantificación y junto con ella a la idea de que la física de los átomos debía ser diferente de la física clásica.

Propiedades del Átomo de Bohr.

Atendiendo a las características estructurales del átomo las propiedades de este varían. Así por ejemplo los átomos de que tienen el mismo número de electrones de valencia que poseen distintos números atómicos poseen características similares.
Los átomos están formados por un núcleo que posee una serie de partículas subatómicas. Alrededor del núcleo se hallan en diferentes órbitas los electrones.
Las partículas subatómicas de las que se compone el núcleo son los protones y los neutrones. Los átomos son eléctricamente neutros. Luego, si contienen electrones, cargados negativamente, deben contener también otras partículas con carga positiva que corresponden a la carga de aquellos. Estas partículas estables con signo positivo se las llamó protón. Su masa es igual a 1,6710-27 kg.


Con estas dos partículas, se intentó construir todos los átomos conocidos, pero no pudo ser así porque faltaba unas de las partículas elementales del núcleo que fue descubierto por J. Chadwick en 1932 y que se llamó neutrón. Esta partícula era de carga nula y su masa es ligerísimamente superior a la del protón (1,6748210-27kg.).
Situados en órbitas alrededor del núcleo se hallan los electrones, partículas estables de carga eléctrica negativa y con una masa igual a 9,1110-31kg. El modelo de Bohr explica el espectro del átomo de hidrógeno, pero no los de átomos mayores.


Sin negar el considerable avance que suposo la teoría atómica de Bohr, ésta solo podía aplicarse a atómos muy sencillos, y aunque dedujo el valor de algunas constantes, que prácticamente coincidian con los valores experimentales sencillos, el modelo no fue capaz de explicar los númerosos saltos electrónicos, responsables de las líneas que aparecen en los espectros de los átomos que poseen más de un electrón. Al modelo de Bohr se le fueron introduciendo mejoras, pero la idea de un átomo compuesto por orbitas aldededor de un núcleo central puede considerarse demasiado sencilla, no fue posible interpretar satisfactoriamente el espectro de otros átomos con más de uh eléctrón (átomos polielectrónicos) ni mucho menos la capacidad de los átomos para formar enlaces químicos.




















AUTO EVALUACION


En el siguiente autoevaluación, encontraras, una serie de vínculos, que pondrán a prueba tus conocimientos adquiridos, este blog, ten encuentra que cada actividad tiene un tiempo. Contesta, al final te daré un puntaje.

Haz clic sobre la actividad que deseas evaluarte.


PUBLICADO POR: maria teresa cortes

No hay comentarios: